

SDSS-II Development Projects

Bill Boroski

SDSS-II First Year Review National Science Foundation August 7, 2006

Areas of Development

- SEGUE Survey
- Supernova Survey
- Photometric Calibration
- Data Acquisition System Upgrade

SEGUE Development Work (1)

Target Selection

- Algorithm for high-latitude (|b|>20) stellar objects done
- Algorithm for low-latitude objects has been tested on the sky; results still being analyzed.
 - Simpler algorithm focusing on blue stars, K-giants, high proper motion objects.

SEGUE Development Work (2)

Spectro Data Reduction Pipeline (Spectro v5)

- Several new outputs
 - Extracted spectra for a single CCD of a single 15 minute exposure, before red and blue halves, and multiple exposures, are combined.
 - Sky flux subtracted from each fiber.
 - New header keywords
 - Median and RMS spectrophotometry minus photo mag for standard stars and main galaxies in g, r, and i-bands
 - Exposure number for the "best" exposure (all 4 cameras)
 - Identifier for each individual exposure + CCD used in the exposure combine
 - New fields in the spPlate and spCFrame files:
 - 'SCI_EXPTIME', 'CALIBFLUX ', CALIBFLUX_IVAR', and 'SFD_EBV'
- Testing and analysis is underway
 - Improved scattered light handling
 - Zero points of the radial velocity templates (ELODIE velocities are off slightly currently being studied)
- Plan is to reprocess all spectro data using the new pipeline once it's declared production-ready
- New reductions will be available in DR6

SEGUE Development Work (3)

Stellar Atmosphere Pipeline

- Used to estimate stellar parameters (Teff, log g, [Fe/H]) based on R=2000 spectroscopy and ugriz photometry.
- Incorporates a number of independent methods (obtained from different calibrations) for each parameter, which are then suitably averaged in the final estimation process.
- Version 1.0 was recently completed
 - Run by the development team and an initial set of stellar parameters distributed to the Collaboration for review - Testing and validation by the production team should begin soon.
- Remaining work includes
 - Finishing observations of first-pass calibration stars now being obtained with HET; when the data are reduced and analyzed, we anticipate having over 100 high-res spectra of SEGUE stars with which to evaluate Spectro v5.
 - Continue work to extend the reach of the current pipeline to include stars with Teff > 10,000K.
 - Refine methods for estimating stellar parameters based solely on ugriz photometry.
 - Develop and test an artificial neural network approach for parameter estimation from spectroscopy alone.

SEGUE Development Work (4)

Calibration of Filter Systems, Photometry

- Refine transforms: ugriz <->UBVRI <-> u'g'r'i'z'
- Work being carried out at several institutions, with scientific goal of obtaining photometric metalicities

Photometric Pipeline

- Development work involves modifying Photo to process data taken in crowded fields
- The code has been adapted to handle crowded-field photometry on multipleband data at low latitudes
- Testing is underway by the developers using test fields and reductions.
- Remaining work includes
 - Packaging the code for inclusion into production data processing operations
 - Delivering the code to production for testing and validation
 - Processing existing SEGUE data using the new pipeline; and distributing the results to the Collaboration for testing and analysis
 - Incorporating the new pipeline into the production process
 - Updating the CAS data model to accept the additional data outputs

SEGUE Development Work (5)

Quality Assessment Tools

- Some work ongoing at a low level to develop SEGUE-specific QA tests
- Data quality currently being monitored using existing imaging and spectro QA tools
- Quality also monitored by scientists looking at various data types and by developers in the process of code development & testing

Data Processing System at Princeton

- SEGUE spectroscopic reductions will eventually occur at Princeton
- Computing hardware has been purchased, installed and commissioned
- Additional hardware (with substantial disk space) will be required to support imaging data processing on crowded fields.

Data Distribution Upgrades

- No significant progress to date; efforts were focused on completing DR5
- SEGUE data have been distributed using existing DAS and CAS
- Approved data model changes for DR6 geared to accommodate various SEGUE parameters
- Modifying database code to accommodate these changes is currently underway

Supernova Survey Development (1)

SN Compute Cluster

- A rack of (10) dual-processor machines was assembled and installed at APO to perform near-real-time reductions of SN data
- DC-powered computers were chosen to reduce heat load
- Data are spooled directly from the DA file servers throughout the night
- Artificial supernovae were used to monitor the performance of the data system, checking detection efficiency and photometric accuracy as functions of magnitude for each run.
- System worked very reliably throughout the fall 2005 observing season.

APO Computer Room Upgrade

- Three existing Uninterruptable Power Supplies (UPS) were replaced with a single, more efficient 20 KVA unit.
- New unit was relocated outside of the computer room to further reduce heat loading
- Significantly less costly, and less-disruptive solution than upgrading plant cooling system

Supernova Survey Development (2)

Frame Subtraction Pipeline

- Modified to use more astrometric, PSF and mask information from Photo to reduce the number of processing steps.
- Incorporated capability to handle co-added Stripe 82 template data, intended to improve the S/N for supernova detection.
- Implemented improved diagnostics of subtraction performance for QA
- Implemented improved remapping algorithm for more reliable subtractions.
- Improved PSF convolution and object-finding algorithms.
- Added on-mountain subtraction in i-band (in addition to g and r-band subtractions that were there for the 2004 test run)

Stripe 82 Database

- Created a simple MySQL database containing the SN imaging runs obtained on Stripe 82
- Created a veto catalog of variable sources and a catalog of calibration stars.
- Over time, this will likely be merged with the Runs DB

Supernova Survey Development (3)

Spectroscopic Target Selection

- Developed a web-based interface using gif images to improve the process of human inspection of supernova candidates.
- Implemented photometric redshift information for supernova candidate host galaxies to aid in target selection.
- Developed an automated target selection algorithm using early-epoch photometry data and fits to redshifted, multi-band template light-curves of different supernova types
- Augmented automated algorithm with further information about host galaxy (and likely host galaxy extinction) from the SDSS database.

SN Data Distribution

- A web site for distributing SN data was developed and made available to the public in January 2006.
- Provides an overview of the SN Survey, a description of the data products, and instructions for accessing the data.

Photometric Calibration

• **Objective:** to improve the relative photometric calibration of the SDSS imaging data from of order 2% to of order ~1%.

To date, we have successfully:

- Run all Apache Wheel data through the Apache Wheel pipeline
- Developed code to incorporate these data into the ubercalibration pipeline
- Developed code to sweep through the SDSS imaging data, in order to create a list of stars based on magnitude limits set for each of the five filters
- Developed a full survey simulator to test the calibrations
- Ran the selected set of imaging data through the ubercal pipeline
- Result is ~1% relative calibration errors across 8500 deg² in griz and ~2% for the u band.
- A paper has been written by Nikhil Padmanabhan, et al, describing the process and results in detail. Currently in draft form; distributed internally for review.

Photometric Calibration (2)

Remaining Work

- Ubercal generates its own flat field vectors, which are different from the flat fields used in the production reduction; effort is required to determine if/how to apply corrections.
- Ubercal only works on bright isolated stars; effort is required to determine if corrections can accurately be applied to other objects
- Exporting ubercal outputs for inclusion in production data processing operations;
 - Still need to formulate a plan for how ubercal outputs will be applied to the factory reductions, or how ubercal might be incorporated into factory operations
 - One option is to add a table to the CAS containing the ubercal corrections; users can choose whether or not to apply.

DA Upgrade

 Objective: to address obsolescence and reliability issues; eliminate writing data to tape; and provide faster access to data.

The new system was put into place during the 2005 summer shutdown

- Obsolete SGI Challenge computers were replaced with Linux boxes
- Obsolete MVME167 single-board computers were replaced with MVME5500 PowerPC computers.
- Fileservers with removable drive bays were implemented. Data are now written directly to disk; each server has capacity for (9) nights of imaging data.
- Modifications were made to several software packages (including porting code to run on Linux)
- Added new features (e.g., checksum calculations)

Modifications at the receiving end

- Developed automated scripts that look for new data, initiate data transfer over the internet, and package the data for archiving and data processing
- Created web page that reports the status of transferred data and informs the observers of data that can be deleted from the APO file servers

DA Upgrade (2)

The Result

- The new system has proven to be more reliable and robust
- Data taken with new DA are of the same quality as those taken prior to the upgrade.
- Upgrade was completed on time: first science spectra collected on August 29 and first imaging data on Sept 2.
- Although there were numerous communication problems and minor bugs to work out, very minimal science time was lost to implementation.